A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries.
نویسندگان
چکیده
A dense and thick flake-like cathode structure was demonstrated to have a preferential crystallographic orientation for Li(+) migration and a better tolerance to cracking, both of which enable a reversible and stable capacity at moderate rates from 0.1 to 2 C.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملNitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 oC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron micros...
متن کاملOrganic carbon gel assisted-synthesis of Li1.2Mn0.6Ni0.2O2 for a high-performance cathode material for Li-ion batteries
Lithium-rich layered oxide Li1.2Ni0.2Mn0.6O2 with a stable network flake structure has been synthesized through a facile resorcinol–formaldehyde (RF) organic carbon gel-assisted method. The as-prepared sample used as a cathode material in lithium ion batteries (LIBs) was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron mic...
متن کاملEffect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries
Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries Minki Jo, Young-Sik Hong, Jaebum Choo, and Jaephil Cho* Division of Energy Engineering, Ulsan National Institute of Science & Technology, Ulsan 689-805, Korea Department of Science Education, Seoul National University of Education, Seoul 137-742, Korea Department of Applied Chemistry, Hanyang University, An...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 16 شماره
صفحات -
تاریخ انتشار 2014